in 72% yield as a colorless liquid, b.p. 94–96° (2 mm.); n^{20} D 1.5425; d^{20}_4 1.052; $MR_{\rm D}$ (calcd.)¹⁰ 45.12, $MR_{\rm D}$ (obs.) 44.39; $\lambda_{\rm max} 263$ mµ, log e 3.62; $\lambda_{\rm min} 235$ mµ, log e 3.27.

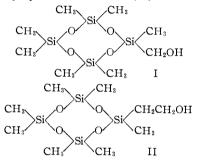
Anal. Calcd. for C₁₀H₁₂O: C, 81.01; H, 8.16. Found: C, 80.74; H, 8.03.

The N-(p-bromophenyl)-maleimide adduct crystallized from methanol in colorless needles, m.p. 198-201°.

Anal. Calcd. for $C_{20}H_{18}O_3NBr$: C, 60.00; H, 4.53; N, 3.50. Found: C, 60.14; H, 4.54; N, 3.57.

BAKER LABORATORY OF CHEMISTRY

Cornell University Ithaca, New York



Hydroxyalkylcyclosiloxanes

By MAURICE PROBER

RECEIVED MAY 19, 1955

As part of a program on polar silicones, it was of interest to prepare cyclic tetramers containing hydroxyalkyl groups, notably hydroxymethylheptamethylcyclotetrasiloxane (I), and β -hydroxyethylheptamethylcyclotetrasiloxane (II).

Silicon compounds containing hydroxymethyl groups have been prepared by treating the chloromethyl compound with potassium acetate in acetic acid followed by methanolysis of the acetate.¹ With the chloromethyl cyclic tetramer, the reaction with potassium acetate–acetic acid led to ring opening and formation of polymeric siloxanes.² The preparation of I by neutral hydrolysis of the chloromethyl cyclic tetramer was unsuccessful.

Since the Grignard reagent of the chloromethyl cyclic tetramer has been described recently,³ I was prepared by treating this reagent with oxygen; II was obtained by reaction with formaldehyde. The yields were low in both cases. Although improved yields are often obtained by coöxidizing a Grignard reagent in the presence of isopropylmagnesium bromide,⁴ this technique did not increase the yield. Compound I is a crystalline solid, II a somewhat viscous liquid.

I and II were polymerized with ferric chloride and sulfuric acid and cross-linked gels were formed.⁵

Experimental

 $\label{eq:hydroxymethylheptamethylcyclotetrasiloxane} \begin{array}{c} {\rm (I).--}\\ {\rm Grignard\ reagents\ were\ prepared\ from\ 92.1\ g.\ (0.750\ mole)} \end{array}$

(1) J. L. Speier, B. F. Daubert and R. R. McGregor, THIS JOURNAL, **70**, 1400 (1948); **71**, 1474 (1949).

(2) J. L. Speier, U. S. Patent 2,550, 205 (August 24, 1951).

- (3) M. Prober, This Journal, 77, 3224 (1955).
- (4) M. S. Kharasch and W. B. Reynolds, *ibid.*, **65**, 50 (1943).

(5) The cross Jinking is due to etherification or the formation of trifunctional silicon. The latter could result from the interaction of acid and alcohol to form carbonium ions which undergo siliconcarbon bond cleavage: F. C. Whitmore, L. H. Sommer, J. R. Gould and R. E. Van Strien, *ibid.*, **69**, 1551 (1947); L. H. Sommer and F. J. Evans, *ibid.*, **76**, 1186 (1954). of isopropyl bromide in 700 ml. of diethyl ether and 165.3 g. (0.500 mole) of chloromethylheptamethylcyclotetrasiloxane in 700 ml. of diethyl ether. The solutions were mixed and dry oxygen bubbled through the stirred solution for two hours. The solution was allowed to stand overnight and then poured into a 10% ammonium chloride solution containing a trace of sulfuric acid. The ether solution was washed with water, dried and distilled, yielding 78.4 g. b.p. 49–100° at 1.5 mm., with a 59.2 g. residue. Upon rectification of the distillate, there was obtained 24.7 g. of hydroxymethylheptamethylcyclotetrasiloxane, b.p. 55–58° at 0.5 mm., m.p. 52–56°, yield 16%. Recrystallized from Dry Ice-chilled pentane, m.p. 56–57°. Compound I (as a pure solid) exhibited a strong infrared absorption maximum for OH at 2.92 μ .

Anal. Calcd. for $C_8H_{24}O_5Si_4$: C, 30.73; H, 7.74. Found: C, 30.6; H, 7.7.

A 13% yield was obtained in the absence of isopropyl-magnesium bromide.

 β -Hydroxyethylheptamethylcyclotetrasiloxane (II).—The Grignard reagent was prepared from 264.6 (0.800 mole) of chloromethylheptamethylcyclotetrasiloxane in diethyl ether, the solution chilled to -30 to -40° and 21.0 g. (0.700 mole) of formaldehyde⁶ was distilled in. The reaction mixture was stirred overnight, the temperature slowly rising to room temperature, followed by hydrolysis with dilute sulfuric acid. The ether solution was dried and distilled, yielding 190.7 g., b.p. 70–130° at 2.5 mm., and a 56.4-g. residue. Rectification of the distillate gave 28.5 g. of β hydroxyethylheptamethylcyclotetrasiloxane, b.p. 112–114° at 9 mm., n^{20} D 1.4163, d^{20} , 1.020; $MR_{\rm D}$ (calcd.) 80.96," $MR_{\rm D}$ (obsd.) 80.42; yield 13%. II (as a pure liquid) exhibited a strong infrared absorption maximum for OH at 2.98 μ .

Anal. Calcd. for C₉H₂₆O₅Si₄: C, 33.09; H, 8.02. Found: C, 33.2; H, 8.3.

Polymerization.—Anhydrous ferric chloride and concentrated sulfuric acid (0.5% by weight) were used as catalysts.⁸ The polymerizations were carried out at 80° except for the room temperature reaction of II and sulfuric acid. The polymers were gels which swelled but did not dissolve in toluene.

(6) Monomeric formaldehyde was prepared according to J. F. Walker, "Formaldehyde," 2nd ed., Reinhold Publishing Corp., New York, N. Y., 1953, p. 14. Although an excess of formaldehyde had been prepared, less than the stoichiometric amount was distilled into the reaction flask because of polymerization in storage at -78° . (7) A. I. Vogel, W. T. Cresswell, G. H. Jeffery and J. Leicester,

(7) A. I. Vogel, W. T. Cresswell, G. H. Jeffery and J. Leicester, J. Chem. Soc., 531 (1952); A. I. Vogel, W. T. Cresswell and J. Leicester, J. Phys. Chem., 58, 177 (1954).

(8) J. Marsden and G. F. Roedel, U. S. Patent 2,469,883 (May 10, 1949).

RESEARCH LABORATORY GENERAL ELECTRIC CO. SCHENECTADY, NEW YORK

Studies on the Decarboxylation of Radioactive Glucuronolactone by *in vitro* Systems¹⁻³

By Joseph L. Rabinowitz

Received May 14, 1955

A soluble enzyme system from various tissues of the rat has been obtained which is capable of decarboxylating C¹⁴-glucuronolactone as well as C¹⁴glucuronic acid. The concentration of this enzyme appeared to be highest in liver and kidney (Table I). Kidney appeared to be more constant in activity than did comparable liver preparations. Active extracts of the enzyme were obtained by treatment of kidney tissues with phosphate buffer at pH 7

(1) The radioactive materials were obtained on allocation from the United States Atomic Energy Commission.

(2) The C¹⁴-glucuronolactone uniformly labeled was obtained through the generosity of the Corn Products Refining Company.

(3) Aided by a grant from the Muscular Dystrophy Association of America, Inc.

		INDED I				
ENZYMATIC ACTIVITY OF VARIOUS TISSUES ^a						
Tissues	Expt. no.		Radioactivity recovered as CO2 Range, c.p.m./mg. in BaCO3			
Kidney	1	Tissue slice	10,000-15,000			
		Homogenate	16,000-18,000			
	2	Tissue slice	14,000-15,000			
		Homogenate	27 , 000– 29 , 000			
Liver	1	Tissue slice	10,000-11,000			
		Homogenate	34,000-36,000			
	2	Tissue slice	43,000-49,500			
		Homogenate	203,000-208,000			
Brain	1	Tissue slice	850-910			
		Homogenate	920 - 950			
Heart (muscle)	1	Tissue slice	560-590			
		Homogenate	480-600			
Leg muscle	1	Tissue slice	560-630			
-		Homogenate	375 - 625			
^a Each flask	containe	d 1 g. of tissue	or its equivalent			

TABLE I

"Each mask contained 1 g, of tissue of its equivalent amount of protein. Additions were 1 mg. each of ATP, DPN and C¹⁴-glucurone uniformly labeled; 3-hour incubations at 36°; gas phase O_2 . fragments have not as yet been characterized; further studies along this line are in preparation. These results utilizing enzyme systems appear to

TABLE IV

Effect	OF AGING ON S	OLUTIONS	OF	Potassium	GLUCU-			
RONATE ^a								
Age of substrate soln.	Substrate for added solid u formly label	m of 1ni-	Concn of sub- strate, mg.	recovered in c.p.m./r	n BaČOs, ng. C			
1 min.	C ¹⁴ -Glucuronol	actone	1	18,000	172,000			
			3	26 , 000	185,000			
			5	17,500	95,000			
2 hr.	C14-Glucuronol	actone	1	21,000	196,000			
			3	18,000	185,000			
			5	12,000	85,000			
1 min.	C ¹⁴ -Potassium	glucu-	1	44,000	222,000			
ronate			3	52,000	208,000			
			5	42 , 000	185,000			
2 hr.	C ¹⁴ -Potassium	glucu-	1	11,000	19,000			
	ronate		3	12,200	20 , 000			
			5	15,500	230 ,000			

 a Final volume of 1.7 ml. per flask. Additions were 1 mg. each of ATP and DPN; gas phase O₂.

TABLE II										
ENZYMATIC ACTIVITY	OF	Кп	ONE	Y	Prepai	RATI	ON ^a			
	-						~ ~	-	~ ~	

	~R	adioactivity recov		aCO2, c.p.m./mg.	с <u> </u>	
System utilized		2	Expt. no. 3	4	5	
(T)			9,500	15,000	32,000	
(WH)	27,000	138,000	96,000	99,000	176,000	
$n^{c}(\mathbf{M})$	300					
$(\mathbf{M_1})$	10,000					
(S_5)	159,000	465,000				
(S_{10})			335,000	200,000	150,000	
(MS)	300	9,600				
	117,000	510,000				
	129,000	480,000				
		525,000				
	(WH) (M1) (S5) (S10)	$\begin{array}{ccccc} & & 1 \\ (T) & \dots & \\ (WH) & 27,000 \\ m^{o}(M) & 300 \\ (M_{1}) & 10,000 \\ (S_{5}) & 159,000 \\ (S_{10}) & \dots & \\ (MS) & 300 \\ & 117,000 \\ 129,000 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

^a Each flask contained an equivalent amount of the original tissue used. The additions were 1 mg. each of ATP, DPN and C¹⁴-glucurone. Incubation was for 3 hours at 36°. Gas phase O₂. ^b Supernatant fluid after 7 minutes at 600 × g. ^c Residue of the $40,000 \times g$. ^d From $40,000 \times g$. ^e From $100,000 \times g$. ^f Residue of $100,000 \times g$.

(Table II). For maximum efficiency, nicotinamide, uridine triphosphate, adenosine monophosphate and diphosphopyridine nucleotide, as well as magnesium ions, were required. $6 \cdot C^{14}$ -Glucuronolactone yielded CO₂ having six times the radioactivity of that obtained from uniformly labeled C¹⁴glucuronolactone (Table III). These results suggest that carbon six is probably the only carbon involved in this decarboxylation. The remaining

Table III

Decarboxylation of Uniformly Labeled C¹⁴ and 6-C¹⁴-Labeled Substrates^a

Radioactive precursor, S.A. 1 mc./mmole	Recovered radioactivity as CO2 in BaCO3, range, c.p.m./mg. C
Glucurone-6-C ¹⁴	158,000-163,000
Glucurone uniformly labeled-C ¹⁴	25,500-37,000
Potassium glucuronate 6-C ¹⁴	185,000-194,000
Potassium glucuronate uniformly labeled-	
C ¹⁴	34,000-39,000

 a To 3 ml. of enzyme system, additions were 1 mg. each of ATP, DPN, UTP and 3 mg. of the radioactive substrate; incubation was for 3 hr. at 36°; gas phase CO₂.

be parallel to the findings observed by Douglas and King.⁴

The addition of citrate, α -ketoglutarate, etc., did not affect the reaction.

Although the same quantitative results were obtained when freshly prepared glucuronolactone was compared with aged preparations of glucuronolactone, the utilization of potassium glucuronate solutions appeared dependent upon the storage time. Freshly prepared solutions were more readily utilized than were older solutions (Table IV).

Because of the rapid rates of isomerization of this substance in aqueous solution it is impossible to decide which form is the active substrate. The enzyme appeared to be most efficient at a pH range of 6.8 and 7; efficiency falls off sharply on either side of the optimal pH. The enzyme system was saturated with substrate at the concentrations employed as indicated in Table IV.

Experimental

Male Wistar rats were sacrificed by cervical fracture and the organs quickly removed. Work was carried on in a (4) L B Durde and O C View L Birl Char 200 (1973)

(4) J. F. Douglas and C. G. King, J. Biol. Chem., 203, 889 (1953).

walk-in refrigerator at 0°. The buffer utilized was: K_{2} -HPO₄, 0.067 M_i ; KH₂PO₄, 0.042 M_i ; MgCl₂, 0.06 M_i nicotinamide 0.03 M, pH 7.⁵ Surviving tissue slices were prepared in the usual way with a Stadie slicer. Cell-free homogenization for 20 seconds in a loose fitting Potter-Elvehjem glass homogenizer. Two and a half volumes of buffer were employed. Cell debris, cells and nuclei were removed by centrifugation at 2000 r.p.m. for 7 minutes. The remaining particulate fraction was subjected to centrifugation at 20,000 r.p.m. for 30 minutes (40,000 g) and the resulting mitochondria were washed with cold buffer solution and resedimented (fraction M). The mitocnondria were extracted by the method of deDuve.⁶ The microsomal fraction was obtained after centrifugation at 36,000 r.p.m. for 30 minutes (100,000 g.). A Spinco preparative ultracentrifuge was utilized for all the separations and the speeds indicated refer to dial readings. Flask additions were 1 milligram each of uridine triphosphate, diphosphopyridine nucleotide, adenosine monophosphate and C¹⁴-glucurone (1 mc./mmole); except when specified. The time interval between preparation of the glucurone solution and the incubation of the solution is given for each experiment. The evolved CO₂ was absorbed by a saturated Ba(OH)₂ solution layered with toluene. Measurements of radioactivity were performed in a flow counter; the results were corrected to infinite thinness.

Acknowledgments.—The author is deeply indebted to Dr. R. M. Dowben and Dr. S. Gurin for their kind encouragement and advice. The author is happy to acknowledge the technical assistance of Mrs. J. Mullin and Miss O. Oleksyshyn.

(5) J. L. Rabinowitz and S. Gurin, J. Biol. Chem., 208, 307 (1954).
(6) C. deDuve, J. Berthet and F. Applemans, Nature, 167, 389 (1951).

RADIOISOTOPE UNIT

VETERANS ADMINISTRATION HOSPITAL PHILADELPHIA, PA.

Biosynthesis¹ of C¹⁴-Labeled Cotton Cellulose from D-Glucose-1-C¹⁴ and D-Glucose-6-C¹⁴

By F. Shafizadeh and M. L. Wolfrom Received May 12, 1955

To study the mechanism of controlled ignition of cellulose nitrate which results in the formation of a variety of decomposition products,² we were interested in the production of specifically labeled cellulose-C¹⁴. The biosynthesis of labeled cellulose has been investigated in the cultures of *Acetobacter xylinum*³ and *Acetobacter acetigenum*,⁴ in a maturing cotton boll,⁵ and in growing wheat seedlings.^{6,7} Greathouse and associates have reported that the biosynthesis in a maturing cotton boll required the introduction of D-glucose-1-C¹⁴ at the time of maximum sugar translocation (21 days after fertilization of the flower) and the product cotton cellulose-C¹⁴ gave on hydrolysis a 44% radiochemical yield

(1) This work was carried out under contract (DA-33-019-ord-1476; technical supervising agency, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland) between the Office of Ordnance Research of the U. S. Army Ordnance Corps and The Ohio State University Research Foundation (Project 591).

(2) M. L. Wolfrom, Abstracts Papers Am. Chem. Soc., 127, 9E (1955).
(3) F. W. Minor, G. A. Greathouse, H. G. Shirk, A. M. Schwartz and M. Harris, THIS JOURNAL, 76, 1658, 5052 (1954); G. A. Greathouse, H. G. Shirk and F. W. Minor, *ibid.*, 76, 5157 (1954); F. W. Minor, G. A. Greathouse and H. G. Shirk, *ibid.*, 77, 1244 (1955).

(4) E. J. Bourne and H. Weigel, Chemistry & Industry, 132 (1954).
(5) G. A. Greathouse, Science, 117, 553 (1953).

(6) S. A. Brown and A. C. Neish, Can. J. Biochem. Physiol., 32, 170 (1954).

(7) J. Edelman, V. Ginsburg and W. Z. Hassid, J. Biol. Chem., 213, 843 (1955).

of D-glucose-1-C¹⁴ with 99.97% of the activity at position one⁵; the culture of Acetobacter xylinum, in a medium containing D-glucose-1-C¹⁴ and ethanol, produced bacterial cellulose-C14 in a 3.7% radiochemical yield with 70% of the label at carbon 1 and 28.7% at positions 3 and 4.3 The Acetobacter acetigenum, when grown in a medium containing DL-lactate-1-C14, gave a product cellulose which was labeled mainly in the middle positions of the D-glucose molecules.4 Conversely, the radioactive Dglucose unit of the cellulose that was biosynthesized from D-glucose-1-C¹⁴ and D-glucose-6-C¹⁴ by the growing wheat seedlings, had about 90% of its activity at the terminal positions (approximately) 70% at the original terminal position and 20% at the other).7 Of these products, labeled cotton cellulose was best suited for our requirements.

Small quantities of D-glucose- $1-C^{14}$ were introduced into ten selected cotton bolls according to the method of Greathouse⁵ and the treated bolls were allowed to continue in their normal course of development. The crops of radioactive cotton were separated from the seeds and the dried capsules, pooled together and purified; the seeds and dried capsules were found to be radioactive. A representative sample of the radioactive cotton was hydrolyzed by the procedure of Monier-Williams.⁸ The resulting D-glucose was chromatographed over carbon⁹ and oxidized to potassium D-gluconate.¹⁰

Sometime later, another like series of experiments was carried out with D-glucose-6-C14 but under better growth conditions. Radioactive assay of the C¹⁴-labeled potassium D-gluconates indicated a radiochemical yield of approximately 10.6% for the biosynthesis of cellulose- C^{14} from D-glucose-1- C^{14} and 23.5% from D-glucose-6- C^{14} , based on the assumption that purified cotton consists of 100%pure cellulose. The distribution of the label between the terminal and middle positions of the anhydro-D-glucose units, which are given in Table I, was established by periodate oxidation of the potassium D-gluconates according to the method of Eisenberg.¹¹ As noted above, similar results have been obtained by Hassid and associates for the incorporation of D-glucose-1-C14 and -6-C14 into the cellulose formed by growing wheat seedlings.

TABLE I

C ¹⁴ -LABELED	Сот	TON	Cellulose;	DISTRIBUTION	OF
RADIOACTIVITY IN THE		Component	ANHYDRO-D-GLUC	OSE	
			UNITS		

Cellulo	se from	μc./mole ^a Cellulose from D-glucose-6-C ¹⁴ C		
29.5	128.5	129.1		
19.1	60.5	28.6		
4.4	34.3	13.5		
6.6	38.7	92.0		
	$\begin{array}{c} \text{Cellulo}\\ \begin{array}{c} \text{D-gluco}\\ A^{b} \end{array} \\ 29.5 \\ 19.1 \\ 4.4 \end{array}$	$\begin{array}{cccc} 29.5 & 128.5 \\ 19.1 & 60.5 \\ 4.4 & 34.3 \end{array}$		

^a Microcuries per mole. ^b Preferred greenhouse growth conditions; 10 bolls combined. ^c Less favorable growth conditions; 1 boll.

Greathouse⁵ has suggested that his data indicate a direct polymerization of intact D-glucose-1-C¹⁴

(8) G. W. Monier-Williams, J. Chem. Soc., 119, 803 (1921).

(9) R. L. Whistler and D. F. Durso, THIS JOURNAL, 72, 677 (1950).

(10) S. Moore and K. P. Link, J. Biol. Chem., 133, 293 (1940).

(11) F. Eisenberg, Jr., THIS JOURNAL, 76, 5152 (1954).